Способность к электриза-ции. - способность тел притягивать к себе предме-ты.
Эти тела оказ. заряженными.
Q=ne Q - заряд тела n=1,2,...
Заряды приобретаемые при электризации всегда кратны е и заряды явл. дискретными.
Сущ. три способа электриза-ции тел.
1) Электризация через трение - трибоэлектризаия.
2) Электризация наведением (явление электростатиче-ской индукции).
3)Электризация с помощью электритирования.
Электрическ. заряды сохр. на заряженных телах различное время в зависемо-сти от способа электризации в1) и 2) - короткое время , 3) - годы и десятки лет.
В замкгутой системе электриз тел (нет обмена зарядами с внешними телами) алгебраическая сумма эл. зарядов остается постояной при любых процессах происходящих в этой системе.
SQi=const
i
Точечный заряд это физич. абстракция.
Точечным зарядом принято называть заряж. тело розмера которого малы по сравнению с расст. до точки исследования.
Одноименные заряды отталкиваются, разноимен-ные притягиваются.
Зак. Куллона.
Сила взаимодействия междуточечными неподвиж зарядами
q1 и q2 прямопропорциа-нальны величине этих зарядов и обратнопропорц. расст. между ними.
F=kґ((q1q2)/r2
k=1/4pe0 e0=8,85ґ10-12 Ф/M
e0 - фундоментальная газовая постоянная назв газовой постоянной.
k=9109 M/Ф
Зак. Куллона (в другом виде)
F=(1/4pe0)ґзq1q2з/r2
вакуум e=1
F=(1/4pe0)ґзq1q2з/er2
для среды e№1
Если точечн. заряд помес-титьв однородн. безгра-нич.среду куллоновская сила уменьшится в e раз по сравнению с вакуумом. e - диэлектр. проницаемость среды.
У любой среды кроме вакуума e>1.
Зак. Куллона в векторной форме.
Для этого воспользуемся единичным ортом по направ-лению вдоль расстояния между двумя зарядами.
_ _ _ _
er=r/r r =erґr
_ _
F=(1/4pe0)ґ(зq1q2зґr)/r3 векторная форма
В Си - сист единица заряда 1Кл=1Аґс
1Куллон - это заряд, проте-каемый за 1 с через все поперечное сечение провод-ника, по которому течет
то А с силой 1А.
Зак.Куллона может быть применен для тел значи-тельных размеров если их разбить
на точечные заряды.
Кулл. силы - центральные, т.е.
они направлены по линии соед.
центр зарядов.
Зак. Куллона справедлив для очень больших расстояний до десятков километров. При уменьш. расст. до 10-15 м справедлив, при меньших несправедлив.
Электростатич. поле.
Хар. электростатич.поля.
_ _
(Е, D, j)
В пространстве вокруг эл. зарядов возникает электро-статическое поле (заряды не подвиж.).
Принято считать, что электростатическое поле является объективной реальностью. Обнаружить поле можно с помощью пробных электрических зарядов.
Пробн., полож., точечный заряд должен быть таким, чтобы он не искажал картины иследуемого поля.
Напр. электростатич. поля.
_
Е - напряженность электро-статического поля. Напря-женность электростатиче-ского поля является силовой характеристикой.
_ Напр. поля в данной
Е=F/q0 точке пространст-ва
явл. физ. вел. численно равная силе (куллоновск.)
действ. в данной точке на единичный неподвижный пробный заряд.
[E]=H/Кл [E]=В/м
Силовая линия - линия, в каждой точке которой напр. поля Е направлена по касательной.
Силовые линии строят с опред.
густотой соответствующей модулю напр. поля: через площадку 1 м2 проводят количество линий Е равное модулю Е.
При графическом представ-лении видно, что в местах с более
густым располож. Е напр. больше.
Вывод формул для напр. поля точечн. заряда.
q - заряд создающий поле.
q0 - пробн. заряд.
Е=(1/4pe0)ґ(qґq0)/(r2ґq0)
E=(1/4pe0)ґq/r2
Из E=(1/4pe0)ґq/r2 следует что Е зависет прямопропор-цианально величине заряда и обратнопропорц. расст. от заряда до т. исследов.
В однородн. безгр. среде с e№1
(e>1) напр. поля уменьш. в e раз.
E=(1/4pe0)ґq/er2
_
E=(1/4pe0)ґq2/r3
Электрическое смеще-ние.
_
Опред. формулой для D явл. следущее в данной т. среды электрическое смещение численно равно произвед. диэлектр. проницаемости, эл. постоянн. и напр. поля.
_
D E D=ee0E
[D]=Кл/м2
Напр. эл. поля завсет от e среды поэтому при наличии несколбких граничащих диэлектриков на границе разрыва двух сред напр. поля меняется скачком (линии
_
вектора Е терпят разрыв).
_
Вектор D не завис. от e среды т.е. явл. однаков. по величине
_
во всех средах т.е. скачка D нет , разрыва нет.
_
Покажем что D независ от e.
D=ee0ґ(kq)/(e0ґr2)
D=(1/4p)ґq/(eґr2)
Потенцеал поля.
Силы электростатич. поля консервативные т.е. независ. от траэктории движения заряда.
_
F=- gradП
Fx= -П/x аналогич Fy и Fz
1) F= - dП/dr
Для электростатич. сил F=f(r).
Воспользуемся этой зависе-мостью для введения третей характеристики поля - потенцеала.
Преобр. 1)
2) dП= - Fdr F - кулло-новская сила взаимодейст-вия между двумя точечн. зарядами q и q0.
F=k(чqq0ч/r2) Подставим F в 2) и проинтегрируем лев. и прав. часть.
3) тdП=т -k(чqq0ч/r2)dr из 3)
П= -kчqq0чтdr/r2=
=kчqq0чґ(1/r)+C
Разделим лев. и прав. часть 4) на q0.
5) j=П/q0=(1/4pe0 )ґ(q/r)+C
6) j=П/q0 Потенцеал поля в данной точке численно равен потенцеальной энерии пробного заряда помещенно-го в данную точку.
[j]=B=Дж/К
7) j=(1/4pe0 )ґ(q/r) при j=0 r®Ґ , j ~ d при r=const ,
j ~1/r при q=const
При q>0 j>0 +
При q<0 j<0 -
Потенцеал поля принято изображать на рис. эквипо-тенцеальными линиями или поверх.
Эквипотенцеал - геом. место точек равного потенцеала поля.
Принято эквипотенцеал проводить при Dj =const
Dj=j2 - j1 - разность между двумя ближайшеми эквипо-тенцеалами.
Вывод:
_ _ _ _
D=e0E DE
E=(1/4pe0 )ґ(q/r2) D=q/4pr2
Картина линий Е эквипотенц. поля точечн. заряда.
(для ваку-
ума)
_ _
Е или D Dj=const
_ _
ѕ линии D или Е
--- экви.
_ _
Нарисуем линии E и D при наличии диэлектрика.
Диэлектрк окружен вакуу-мом.
В диэл. e>1 Eд>l , r>>l/2)=(kq2rl)/r4=k(qp/r3)
E=k(2p/r3) E~1/r3
Поле в т. С на перпендик. оси диполя.
k, q, l, r>>l, p=ql, e=1 , r=OC
E - ?
_
чEч=2Пр.Е+
Е+=Е_ в силу симметрии зар.
Е+=Е_=k(q/(rў)2)
E+/E_=cosa=l /2rў
Пр.Е+=Пр.Е_=Е(l /2)
E=2Пр.Е+=2Пр.Е
Пр.Е+=Е+сosa=(kq/(rў)2)ґ
ґl/2rў
_
Пр.Е+/E+=cos aE+
rў~r при r>>l
E=2(kq/(rў)2)ґl=kql /(rў)3=
=kp/r3
(неправильно)
E=k(p/r3)
_ _
Потоки D и Е.
Пусть электростатическое поле будет однородно т.е. такое
_
поле у котор. D=const и все линии поля пп по направле-нию , введ. в это поле плоск. поверхность площадью S, строем нормаль.
_
Пр.D=Dncosa
_
поток D FD=DcosaґS
1) FD=Dncosa
_ _
Потоком D или E назв. физ. вел. числ. = кол - ву. линий
_ _
D или Е пронизывающих исследуемую поверхность при
_ _
условии D или Е ^ поверхности.
FЕ=ЕnS 2)
[FD]=Кл [FЕ]=Вґм
Поток характеристика скалярная, алгебраическая.
При a<900 cosa (+) FD>0
При a<900 cosa (-) FD<0
Запишем общую формулу в случ. когда S имеет произв. форму.
В током случае на поверх S наход. участок площадью dS котор. можно считать плоским, тогда dFD=DnґdS
FD=тDndS
S
Площадке dS припис. векторные свойства.
_ _
dS=dSґn
_ _
FD=т DndS
S
Теор. Гаусса (интегральная форма).
В ряде случаев принцип суперпоз. для вычисления напр. поля применять трудно, в таких случ. напряженность электроста-тич. поля вычисляют с помощью теор. Гаусса.
Теор. Гаусса позволяет легко вычислять Е и D при симметричных расположе-ниях заряда.
Поток вектора элек-трич. _
смещения D cквозь произ-вольн. замкн. поверх. S равен алгебраич. сумме зарядов заключ. внутри поверх.
Замкнутая поверх - такая вкотор нет отверстий.
Алгебр. сумма - сумма заряда с учетом их знаков.
_ _ n
?DdS=Sqi 1)
S i=1
_ _
?EdS=(1/e0)Sqi 2)(для вакуума)
S i
Док - во.
1. Пусть имеется полож. точечн. заряд. q .
_ _
?DdS=?DdS
S S
_ _
Dn a=0 Dn=D
Вынесем за знак интегр.
D?dS=D4pr2=(q/4pr2)ґ4pr2=q
S
_ _
3) ?DdS=q
S
Очевидно если точечн. зар. расп. не в центре а в люб. т внутри поверх. S колич. линий
_
D прониз. поверх. не измен. , т.е. для люб. положения точечн. заряда q внутри сферы формула 3) справед-лива.
Поток сквозь поверх. другой формы (произвол.) при прежнем заряде q не изме-нится и 3) справедлива.
Внутри замкн. сферы нах. несколько зарядов q1, q2 ,q3, ...,qi,...qn 1Ј i Јn
Докажем что в этом случ. теор. Гаусса верна.
На основ. 1)
для кажд
зар. теор.
справед-лива.
_ _
4) ?DidS=qi
S
в 4) просуммируем левую и правую часть.
_ _
S?DidS=Sqi
i i
_ _
?(SDi)dS=Sqi
s i i
_ _ n
?DdS=Sqi 5)
s i
Форма записи 5) имеет назв. интегральной формы записи.
Интегр. форм. - обознач. что в формуле характеристики слева и справа относятся к разным точкам пространст-ва.
r - об. плотность.
r=dq/dv (Кл/м3)
6)Sqi=тrdv
i v
_ _
?DdS=тrdv S и V -
v согласо-
ванны.
Практич. применение теор. Гаусса.
Методика применения теоремы.
Дано:
Шар , eш № 0 , eш>0 , eш=e , ecp=1 , r=const , R - радиус шара 1) r>R (вне шара)
2) rER (скачок)
вн сн вн сн
Завис. Е(r)
При eсрR, то внутрь поверхности попада-ет
весь заряд и по теор. Гаусса
4pr2E=Q/e0 , откуда
E=(1/4pe0)ґQ/r2 (r і R)
Если rўR
2plЕ=t(l/e0) , от сюда Е=(1/2pe0)(t /r) (r і R).
Если r0
_
(+ зар) div D>0 - исток расхождения. Если r<0 ( - зар)
_
div D<0 вхождение линий.
Из3) важное следствие:
Источником поля явл. электрич. заряд.
Теор. Остроградскрго Гаусса.
Ур. 3) домножим лев. и прав. часть на dV.
_
4) div DdV=r dV
проинтегрируем 4) по объему
_
5) тdiv DdV=тr dV
v v
_ _
тr dV=тDdS
v s
_ _ _
6) тdiv DdV=?DdS - Остр. Г.
v s
согласован «
В теор. Остр. Гаусса содерж. связь между дивергенцией и потоком одного и того же вектора.
Работа сил. электростатич. поля.
Потенциал поля.
Силы электростатич. поля перемещая электрич. зар. соверш. работу.
Вычислим работу сил электростатич. поля для перемещения зар. по произ-вольной траектории.
q - созд. поле.
+q0 -перемещ. в поле заряда q.
Рассмотрим перемещение заряда на элементар. кчастке dl.
0) dA=Fldl =Fcos adl =Fdr
r - тек. расст. между q иq0.
Найдем полную работу.
2 2
А=тdA=тFdr
1 1
Поскольку Fdr cosaў=1
_ _
Fdr=Fdr
r 2_ _
1) A=тFdr
r 1
Воспользуемся для получ. втор. формулы связью между
_ _ _ _ _ _
Е и F. E=F/q0 E=q0E
_ _
2) dA=q0Eldl =q0Edl =
=q0Ecos adl
интегрируем 2) лев. и прав. часть
2 _ _
3) A=q0тEdl
1
Получим еще одну форму-лу.
Воспольз. 1) в котор. подставим ур. Fкл.
r2
A=тk(q0ґq/r2)dr
r1
A=q0((kq/r1) - (kq/r2))
Из 4)
5) A=q0(j1 - j2)
Работа при перемещении зар. q0 электростатич. силами равно произв. вел. этого заряда на разность потенциала в начальной и конечной точке.
Из 4) след. что работа сил поля независ. от формы траектор. Силы электроста-тич. явл. консервативными , поле электростатическое явл. потенциальным полем.
Используя 5) дадим второе опред. потенциала. Для этого рассм. перемещение полож. заряда q0 из данной т. в котор.
j1 = j в бесконечность j2=jҐ=0.
Из 5) АҐ=q0j
6) j = АҐ/q0
Потенциал. поле в данн. т. числ. =работе соверш. сила электростатич. поле при перемещении единичного полож. заряда из данной т. в бесконечность. Потенц. скаляр. характеристика. Дж/Км=В
Теор. о циркуляции вектора напр.электростатич. поля.
Потенциальный характер поля.
Рассм. перемещ. зар. q0 в поле заряда q вдоль произ-вольной замкнутой траек-тор. А = 0.
Возмем для работы форм. 3)
_ _
q0?Eldl=q0?Edl =0
L L
q0 № 0
_
1) ?Eldl=0 - циркуляция Е
L _
Циркул. Е в доль произ-вольн. формы замкн. конту-ра=0.
Теор. о циркул. свидетель-ствует о том что электро-статич. поле - потенциаль-ное.
Если циркул. не =0 то поле не потенциально.
Физ. смысл. циркул. числен-но равен работе по перемещ. единичн. полож. зар. по замкн. траектории.
Лекция.
Вычисление разности потенциала по напряж. поля.
2
1)A=q0тEldl
1
2)A=q0(j1 - j2)
2
j1 - j2=тEldl Связь между
1 разностью потенциала и напряженно-стью поля.
Вычислим разность потен-циала для бесконеч. , равномер. заряженной нити с линейной плотностью t .
Пример:
t =dq/dl [ Кл/м]
t1, t2 e=1
(j1 - j2) - ?
El=Er dl=dr
r2 r2
j1 - j2=тErdr=тEdr
r1 r1
E=(t/2pe0r) напряженность поля в точке на расст. r от нити. 2
j1 - j2=(t/2pe0)тdr/r
1
j1 - j2=(t/2pe0)ґln(r2/r1)
Пример 2:
Вычисл. разности потенциа-ла для равномер. заряж. сферы (проводящий шар).
Сфера R , q=1
1) rR
Для точек вне сферы (r>R) из теор. Гаусса напряжен-ность Е вычисляется Е=1/2pe0=q/r2
Внутри (rR j =(1/4pe0)(q/r)
Внутри напряженность поля =0
поэтому j1 - j2=0
j1=j2=jR=(1/4pe0)(q/R)
j =const
Нарис. графики.
Связь между напряженно-стью поля и потенциалом в диффер. форме.
Градиент потенциал.
Для получения связи между Е и j в одной точке восполь-зуемся выраж. для элемен-тарн. работы при перемеще-нии q0 на dl по произвол. траектории.
dA=q0Eldl
В силу потенциального характера сил электроста-тического поля эта работа соверш. за счет убыли потенциальной энергии.
dA= - q0 dj = - П
Eldl = - dj
3) El= - (dj /dl )
Проэкция вектора напряж. поля на произвольном направлении (l) равна взятой с обратным знаком производной по этому направлению.
4) Ex= - (dj /dx)
Ey= - (dj /dy) Ez= - (dj /dz)
_ _ _
E= - ( i (/x)+j (/y)+
_
+k (/z))ґj
_
E= -grad Напряженность
поля в данной т. равна взятому с обр. знаком градиенту потенцеала в этой точке.
Градиент сколяр. фукции явл. вектором.
Градиент показывает быстроту изменения потен-цеала и направлен в стор. увелич потенцеала.
Напряж. поля всегда перпендикулярна к эквпо-тенцеальным линиям.
Пусть точечный заряд q0 перемещается в доль эквипотенцеала j =const , dl - на эквипотенцеали.
dA=q0Eldl dA=0 т.к. Dj =0
El=Ecosa q0Ecosa dl =0
q0№0 E№0 dl№0 cosa=0 a=900
Проводники в электрич. поле.
Электроемкость проводни-ков.
Конденсаторы.
Энергия поля.
§1 Условия равновесия заряда на проводнике. Электростатич. защита.
Внесем в электрич. поле напряженностью E0 тело.
При внесении проводника все электроны окажутся в электростатич поля.
В нутри проводника за короткое время призойдет разделение эл. зарядов (электростатич индукция) с накоплением их на концах.
_ _ _
E0 - внешнее E' ЇE0
_
E' внутри проводника
_ _ _ _ _
Е=E0+E'=0 E'=E0
E - результ. поле в нутри проводника.
В результате рассмотрен-ныых процессов.
Усл. равновес. заряда.
1)Напр. поля во всех точках внутри проводника Е=0 .
2)Поверхность проводника
явл. эквипотенцеальной
j =const.
_
3) Напр. поля Е ^ эквипот.
j =const.
В силу Е=0 проводники люб. формы явл. защитой от электростатич. поля.
Поле у поверхн. заряж. проводника.
Рассм. произаольную форму проводника заряж. по поверх. с поверхностной плотностью s .
Воспольз. теор. Гаусса в интегральной форме.
_ _
?DdS=Sqi
s
На заряж. поверхности отсечем круг площадью S.
?e0EdS=e0EтdS
s s
e0EґS=sґS
в т. А E=s/e0
D=e0E D=s
Напр. поля прямопропорц. поверх. плотности заряда проводника в окрестностях этой точке.
Разделение зар. по провод-нику завис. от его поверх. (у острых углов заряд больше , напряж. сильнее).
Электроемкость проводни-ка.
Единица электроемкости.
Рассм. проводник произв. формы. В близи этого проводника других провод-ников нет. такой проводник назв. уединенным проводни-ком.
Будем заряжать уединенный проводник. При увеличении заряда потенциал прямо пропорционально зависет от Q.
Связь между зарядом Q , потенциалом j , и формой проводника дает электроем-кость С=Q/j .
Емкостью уединенного проводника - назв. физ вел. числ.= величине зар. сообщаемого этому провод-нику при увеличении потенциала на 1В.
В Си 1Ф - фарад.
1Ф=1Кл/1В
Электроемкость зависет от размеров , формы и диэлек-трической проницаемости среды.
С=4pee0R
j =(1/4pee0)ґ(Q/R)
Уединенные проводники при приближении к ним других проводников свою емкость существенно меняет (уменьш. за счет взаимного влияния электростотич. полей).
Лекция.
Конденсаторы.
Типы конденсаторов.
Конденсатор - устройство позволяющие получать стабильное значение емкости независящее от окружения.
Создание закрытого поля не влияющего на металлич. предметы достигается за счет двух металлич. разно-имен. заряж. электродов.
В зависемости от формы обкладок различают плоские , цилиндрические , сфериче-ские конденсаторы.
Расчет емкости конденс. разл. типов.
1)
Дано: s , Ѕ+ s Ѕ=Ѕ - s Ѕ ,
e , S , d
C - ?
C=q/j уедин. проводника
Для конденс.
1) С= q/Dj =q/U
Dj =U - напряжние
С=sS/Ed=sS/[(s/ee0)ґd]=
=ee0S/d 2)
Цилиндрич. конденса-тор.
R1 , R2 , l , e
Ѕ+q Ѕ=Ѕ - qЅ
+t , -t
C - ?
Воспользуемся 1)
R2
С= tl/(тEdr) E= t/2pee0r
R1
Напряженность поля произвольной точки распо-лож. между цилиндрами на расст. r от оси определяется только зарядами на внут-реннем цилиндре (см. теор. Гаусса). Аналогично для тонкой нити.
R2
С= tl/(т(t/2pee0r)dr=
R1
= [tl/(t /2pee0ґln R2/R1)]
3) C=[tl/(t /2pee0ґln R2/R1)]
емкость цилиндрич. конденс.
Сферич. конденсатор.
Сферич. конденс. - две концентрические сферы определ. радиуса.
Дано: e , R1 , R2
Ѕ+q Ѕ=Ѕ - qЅ
C - ?
Использ. 1) R2
С=q/= q/Dj =q/(тEdr)=
R2 R1
=q/(т(q/4pee0r2)dr)
R1
C=q/((q/4pee0)ґ(1/R1 - 1/R2))
C=4pee0R1R2/(R2 - R1)
Для всех видов конденс. видно что емкость зависит от параметров электродов. Всегда с помещением диэлектрика между электро-дов емкость увелич.
Соединение конденсато-ров.
Батареи конденсаторов.
Конденсаторы часто прихо-дится соединять вместе. Часто возник. необходи-мость соед. их в батареи (когда нужно иметь другую емкость).
1) Последовательное соед. - соед. при котор. отрицатель-ные электроды соед. с полож.
У последовательно соед. Конденсаторов заряды всех обкладок равны по модулю , а разность потенциалов на зажимах батареи
n
Dj =еj i
i=1
Для любого из рассматри-ваемых конденс. Dj i=Q/Ci
С другой стороны ,
n
Dj =Q/C=Qе(1/Ci)
i=1
Откуда
n
1/C=е1/Ci
i=1
2) Параллельное соед. - соед. при котор. соедин. между собой обкладки одного знака.
n
С=еCi
i=1
У параллел. соед. конденсо-торов разность потенциалов на обкладках конденсаторов одинакова и равна j а -j b. Если емкости конденсаторов С1 ,С2, ..., С3 то их заряды равны Q1=C1(j а -j b)
Q2=C2(j а -j b)
а заряд батареи конденсато-ров
n
Q=еQi=(C1+C2+...+Cn)ґ
i=1
ґ(j а -j b)
Полная емкость батареи
n
С=Q/(j а -j b)= еCi
i=1
Энергия заряженного проводника и конденсато-ра.
Рассм. уедин. проводник произв. формы. Проведем зарядку этого проводника , при этом подсчитаем работу внеш. сил.
Пусть при перенесении dq из Ґ , проводник приобрел потенциал j . Элементар. работа dA=j dq.
Допустим зарядили до Q .
С=q/j j=q/C
Вся работа совершаемая при зарядке проводника до Q равна.
1) A=Q2/2C 2) A=Cj2/2
3) A=Qj/2
В окружающем простран-стве после зарядки провод-ника возникло электростати-ческое поле, значит работа при зарядке проводника расходуется на создание поля. Значит работа перехо-дит полностью в энергию электростатич. поля.
Wэл=1) или 2) или 3)
Из 1) , 2) ,3) не следует ответа что энерг. Wn локализована в самом поле поскольку в формуле стоят параметры заряж. проводни-ка.
Конденсатор.
Рассм. зарядку конденсато-ра состоящего из двух обкладок
Первый путь - dq перенос. из Ґ на одну из обкладок , тогда на второй обкладке возникнет -.
Второй путь - элементарн. заряд dq перенести из одной обкладки на вторую.
Независимо от способа формулы 1) , 2) , 3) справед-ливы (только j изменяется на Dj).
Энергия электростатиче-ского поля.
Объемная плотность энергии.
Носителем энергии явл. само поле.
Для подтверждения этой идеи возьмем формулу 1).
Wэл=Q2/2C применим ее к плоск. конденсатору. (параметры известны).
Wэл=s2S2d/2ee0S=(s2/2ee0)ґSd=
=(ee0s2/2(ee0)2)ґV
1) Wэл=(ee0E2/2)ґV
Из 1) следует что носите-лем энергии явл. поле с напряженностью Е.
Из 1) следует что все стоящее перед объемом - это объемная плотность энерг. электростатического поля.
2) wэл=(ee0E2/2)
2') wэл=DE/2
В физике доказывается что 2) и 2') можно применять и для неоднородного поля, для котор. полная энерг. может быть вычесленна по форму-ле
3) Wэл=тwэлdV
v
Лекция.
Диэлектрики в эл. поле. Поляризация диэлектриков.
§1 Проводники и диэлек-трики. сущность явл. поляризации.
У проводников электроны могут свободно переме-щаться по всей толще образца.
явл. эле-
ктростатич
индукции
Диэлектрики - вещества плохо или совсем непрово-дящие эл. ток.
В диэлектрике свободные заряды отсутствуют. У диэлектрика очень большое сопротивление.
Во внешнем поле у диэлек-триков происходят очень существенные изменения. Заряды находящиеся в атоме во внешнем поле Е0 смеща-ются или пытаются сме-ститься. Диэлектрик во внеш. эл. поле поляризуется.
поляризуется
При поляризации диэлек-трика Е№0.
У диэлектрика во внеш. эл. поле на поверхности образца появл. связнные некомпен-сированные поляризованные заряды.
Явл. поляризации заключ. в появлении электрич. поля Е при внесении во внеш. поле Е0 появл. связанных поверх-ностных зар. и появлении в толще образца , в каждой единице объема дипольного момента.
Диполь во внеш. эл поле.
Рассм. электрический диполь образованный зарядом q.
_
Электрич. момент p=ql , где l- плечо диполя. Вносим диполь во внеш. поле.
_
Е=const
Ѕ+qЅ=Ѕ-qЅ=q
Запишем силы действующие на заряд.
_ _
На +q - F+ , на -q - F_
_ _ _
ЅF+Ѕ=ЅF_Ѕ=ЅFЅ=F
На электрич. момент действ. пара сил , при этом возник вращающий момент М.
М=Fd=Flsina=Eqlsina=
=Epsina
d - плечо силы
_
M=[P,E] -вращ. момент
(сколяр. произв.)
В однородн. эл поле электри-ческий диполь поворачива-ется до тех пор пока эл. момент не станет направлен по внеш.
_ _
полю PE т.е. эл. диполь в полож. устойчивого равно-веия.
В неоднородном эл. поле диполь наряду с поворотом испытывает поступательное движ. в область неоднород-ного поля.
Типы диэлектриков.
Виды (механизм) поляриза-ции диэлектриков.
В зависимости от структуры молекул различ. два типа диэлектриков поляр. и неполяр.
неполяр. полярные
O2 , H2 , CO ... HCl ,...,CO2
Симметрич. Не симметри-
структура ма- чная структу-
лекул. ра.
Без внеш. поля.
(Е0=0)
В О центры Центры тяж.
тяж. (+) и (-) не совпада-ют
совпадают.
_ _
Pi=0 Pi№0
еPi=0 еPi=0
i i
В силу хао-
тич. движ.
диполей.
У неполяр.
диэл. в отсу-
тств. внеш. по-
ля малекулы не
имеют собств.
эл.моментов.
(диполей нет)
Во внеш. поле
_
Pi№0
Ориентация
_ диполи по
Pi№0 внеш. пол. Е0
еPi№0 еPi№0
i i
диполи
Поляризация в завис. от вида
механизма назв.
Диформацион- Ориентаци-
ная (электрон- онная поля-
ная). ризация.
Независимо от вида поляри-зации у любого поляризован-ного диэлектрика появляется в эл. поле суммарный электрический дипольный момент.
Поляризованность.
Вектор поляризованности.
Связь его с поверхностны-ми зарядами.
Явл. поляризации описыва-ется с помощью важной характеристики поляризо-ванностью или вектора
_
поляризации ?.
Поляризованностью диэлек-трика назв. физ. вел.численно равную суммарному электрическо-му (дипольному) моменту молекул заключенных в единице объема.
_
1) ?=еPi/DV
i
в числителе суммарный момент всего образца , DV - объем всего образца.
В Си[?]=Кл/м2
_ _
2) ?=жe0Е
ж -диэлектрическая воспри-имчевость вещества.
ж>0 ж>1
Из 2) ж -const
Покажем что вектор поляризации равен (для точек взятых внутри диэлектрика).
?= s '
Пусть во внеш. поле Е0 нах. массивный образец.
DV=Sl
Независимо от способа поляриз. справа будет +s ' , справа -s '.
_
еPi =ql=Ss 'l=
i
?=s 'Sl/Sl =s '
Эл. поле внутри диэлектри-ка.
Вектор эл. смещения.
Рассм. поляризацию одно-родного , изотропного диэлектрика (ж -const) внесенного во внеш. одно-родное поле поле Е0 образо-ванное плоским конденс.
На образце появятся поверхностные связанные заряды.
+ s ' , - s '. _
Связ заряды созд. поле Е'
_
напр противополож. Е0.
_ _ _
Е=Е0+Е' Е= Е0+Е'
Е=Е0 - s '/e0=E0 - жe0E/e0
E+жE=E0
(1+ж)= E0
1+ж=e
E=E0/e - напряженность поля в диэлектрике внесен-ного во внеш. поле Е0.
Напряженность поля в диэлектр. Уменьшется в e раз при условии что s на обкладках конденс. остают-ся постоянными.
Если диэлектрик вносится в плоский конденс. подклю-ченный к источнику напря-жения , напряженность остается =Е0.
eЕ=Е0
ee0Е=e0Е0 D0=e0Е0
D=D0=s
В таком случае эл. смеще-ние одинаково в вакууме и в диэл.
Лекция.
s =const E=Е0/e0
E созд. всеми видами зарядов как свободными так и связанными.
D = D0
диэл в возд
U=const
s =const
Е0=E
D=eD0
Связь между связанными и свободными и свободными зарядами (s и s' ).
Связь между s и s' уста-навл.на основании выраж. для напряж. поля.
Е= Е0 - Е'
Е0/e=Е0 - Е'
s/e0=s/e0- s '/e0
s/e= s - s'
s'=(e - 1/e)ґs
_ _ _
Связь между Е , D , ?.
_ _
D= e0eE=(1+ж)ґe0E=
_ _
=e0E+жe0E0
_ _
D=e0E+? - связь
Теор. Гаусса при наличии диэлектриков.
Для воздуха и для вакуума две равные теор. Гаусса.
1) ?Dnds=еqi
S i
2) тe0Ends=еqi
i
1)=2)
При наличии деэлектриков значимость 1) и 2) различна. В формуле 2) при наличии диэлектрика в прав. часть надо добавить алгебраич. сумму всех связанных зарядов 2)' тe0Ends=еqi+
i
+еqi'
i
Вел. связанных зарядов зависет от Еn.
Поток вектора эл. смещения сквозь произвол. замкн поверх. равен алгебраич. сумме всех свобод. зарядов заключ. внутри поверхности.
?Dnds=еqi - теор. Гаусса
S i при наличии диэлек-трика.
Явление на границе двух диэлектриков .
Граничные условия.
Закон преломления линий поля.
До сих пор мы рассм. диэл. вносимый в поле так что поверхность его совпадала с эквипотонц. поверх. , а линии
_ _
Е и D были ^ поверхности.
_ _
Каково направление Е и D
_ _
если Е и D не ^ эквипотонц. поверх.
Для построения картины поля внитри диэлектрика нужно знать граничные условия.
Граничные условия для нормальных составляющих
_ _
Е и D.
Рассм. границу раздела двух диэлектриков.
Псть у 1) - e1
2) - e2
e2 > e1
Пусть на границе раздела
_
двух диэлектрикриков D направлен под углом a.
_ _
Расскладываем D1 и D2 на состовляющие нормальную к поверхности и танген-циальную.
_ _ _
D1=D1n+D1t
_ _ _
D2=D2n+D2 t
Для применен. Теор. Гаусса надо построить замен. поверх.
Нухно выбрать цилиндрич поверхн.
Найдем поток вектора эл. смещения через замкн. поверх.
ФD=D2nDS - D1nDS
Найдем алгебр. сумму зар. попавших внутрь.
D2nDSґD1nDS=0
DS№0
1) D2n=D1n
Cогласно связи.
e2e0E2n= e1e0E1n
2) E1n/E2n = e2/e1
2) - втор. гранич. усл. показ. каково повидение Е на грпнице: En на границе раздела двух диэл. изменя-ется скачком.
Граничные условия для тангенц. состовляющей.
Для получ. этих гранич. усл. воспольз. теор.о циркуляции вектора напряженности электрич поля.
?Еldl=0
L
Нужно построить четеж для
_
Е аналогично рис 1.
_ _ _ _
(1) - Е1® Е1=E1n+E1t
_ _ _ _
(2) - Е2® Е2=E2n+E2t
Для применения теор. о циркул. нужно выбрать замкн. контур. В качестве замкнутого контура выбира-ем прямоугольник стороны котор. ЅЅ границе раздела , высота h®0.
АВ=CD=а
Направление обхода по часовой стрелке.
?Еldl=0 L=ABCD
L
В каждой точке на расст AB E1t ЅЅ этому участку.
Поэтому циркуляция E1t на AB равна
B D
?Еldl=E1tтdl - E2tтdl=0
L A C
E1ta - E2ta=0
a№0
3) E1t=E2t
У вектора напряженности поля при переходе через границу раздела двух диэлектриков не меняется тангенциальная состовля-ющая.
D1t/e1e0=D2t/e2e0
Используя 3) и связь между
_ _
D и E получим:
4) D1t/e1e0=D2t/e2e0 - 4-ое условие .
На границе раздела двух диэлектриков тангенц.
_
сoставл. D изменися.
1,2,3,4 - условия позволяют правельно построить картину линий поля.
Закон преломления линий поля.
tga2=D2 t /D2n tda1=D1 t /D1n
tga2/tga1= D2t ґD1n/ D2nґD1t = =D2 t /D1 t = e2/e1
5) tga2/tga1=e2/e1 - зак. преломления линий поля.
Угол больше в той среде где e больше.
Из 5) следует гуще линии поля располож. В диэлектри-ке где e больше.
e2< e1
Построить картину линий поля.
Активные диэлектрики.
(диэлектрики с особыми поляризационными свойства-ми.)
Мы рассматривали поляри-за-цию однородных , изо-троп-ных диэлектриков.
_ _
?=жe0Е
ж=const
При Е=0 у большенства диэл. ? =0. (поляризация исчезает)
Сущ. диэлектрики с нели-нейной зависемостью.
_ _
? от Е.
_ _
? №жe0Е
2) ? = f(E)
Это первый тип диэл. с особыми свойствами предста-вляет собой класс сигме-нтодиэлектриков.
У сигментодиэлектриков 2) представляет собой петлю гистерезиса.
Петля гистерезиса 1,2,3,4,5,6,1
Область 0,1 - область первич-
ной поляризации.
_ _
При уменьшении Е вектор ?
убывоет по кривой 1,2,3.
_
При Е=0 в диэлектрике сох-
раняется остаточная поляри-
_
зация ? 0.
_
? =0 в т. 3 т.е. при внеш. поле обратного направления.
Лекция.
Постоянный ток.
Проводимость металлов и газов.
Электрический ток - направленное движение зарядов.
Носители заряда - заряды создающие ток.
В электролитах - ионы
металлах - электроны
газах - ионы и электроны.
Проходимостью тока - назв. прохождение зарядов через вещество.
Типы проводимости - ионная , электронная , смешанная.
Независимо от вида прово-димости для тока приняты следующие характеристики:
1) I - сила тока.
2) j - плотность тока.
Сила тока - физ. вел. численно равная заряду переносимому через попе-речное сечение проводника за 1 с. (скалярная вел.)
[ I ]=A
(1) I=q/A
1А = сила тока при прохож-дении которого через поперечное сечение провод-ника в 1 с переносится заряд в 1 Кл.
А - четвертая основная единица в Си.
Направлением тока считают направление положительных зарядов.
Если сила тока постоянна и направление постоянно , то говорят о постоянном токе.
(1) - справедлива для постоянного тока.
Если сила тока меняется со временем то (1) запис. следующую 2) i=dq/dt.
На основании (2) можно получить кол- во заряда переносимого через попе-речное сечение проводника за единицу времени dq=idt.
t
3) q=тi(t)dt
0
Плотность тока - векторная характеристика.
По определению постоянно-го тока плотность тока равна
_
4) ЅjЅ=I/S^ S^- ^ току
Плотность тока - физ. вел. численно равная заряду переносимому за 1с через единичную площадку поперечного сечения расположенного ^ току.
Если ток меняется 5) j=di/dS^
формула 5) дает возмож-ность находить силу тока.
6) di=jdS^=jndS
интегрируем лев. и прав. часть.
_ _
7) i=тjndS =тjdS
S S
Из 7) следует что сила меняющегося тоеа численно = потоку вектора плотности тока через площадь попе-речного сечения.
Единицей плотности тока явл. А/м2.
Связь между плотностью тока и скор. направленного движения носителей тока.
В любом веществе проводя-щем ток носители тока учавствуют в непрерывном чаотич. движ.
uт=cр uт- тепловая скор.
Направленное движ. это движение которое налагает-ся на хаотич. тепл. движ. и вынуждает носителей двигаться в определенном направлении.
cр- ср. знач. скор. направленного движ.
Плотность тока явл. функ-цией. j=f(n, qэл, )
1) j= qэлґn
Для док. рассмотрим проводник постоянного сечения цилиндрич. формы.
n - число носителей тока
qэл- известно
2) j=I/S=q/St
q - вел. заряда переносимого через попереч. сечение S за время t.
l=
V=lS=S
qv= qэлnV - через S^ за 1с.
q=qvґt
Подставим в 2)
i= qэлnVґSt/St _ _
Отсюда следует j=qэлn
Условия существования тока.
Источники тока.
Э.Д.С. источника тока.
Необходимые усл. сущ. тока.:
1) наличие носителей тока
2) наличие сил вынуждаю-щих носителей тока дви-гаться
3) наличие разности потен-циалов вдоль поверхности проводника.
Рассм. отрезок проводника.
Для длительного поддержа-ния тока необходимо какимто образом положи-тельные носители тока с конца 2 перенести на торец 1.
Движение носителей тока внутри образца происходит под действ. силы электрич. природы.
Движение зарядов прекра-тится очень быстро: поло-жительные скапливаются на конце 2.
Перенос зарядов из 2 в 1 осуществить невозможно (это означало бы движения (+) против Е ).
Такой перенос можно осуществить только с помощью силы другой природы не электрич. происхождения.
Этот перенос реализует устройство называемое источником тока.
За счет действия источника тока внутри проводника появл. электрич. поле напряженностью Е.
Поскольку Е поверх. проводника , то поверх. проводника не явл. эквипо-тонц.
j2< j 1
j2 - j 1= Dj
Источ. тока независ. от принципа работы характери-зует e - Э.Д.С. и r - внутр. сопротивл.
Э.Д.С. - называют работу совершаемую сторонними силами по перемещению единич. полож. зар. на замкнутом участке цепи.
1) e=A*/q
[e]=B
Втор. определение Э.Д.С.
2
A=q(j2 - j 1)=qтЕldl
1
2
2) A*=A1,2*= qтЕl*dl
1
E* - напряженность поля сторонних сил.
E*=F*/q
Подставим 2 в 1.
2
3) e=тЕl*dl
1
Для замкн. цепи в 3) нужно взять контурный интеграл.
4) e=?Еl*dl
L
Э.Д.С. - в замкнутой цепи = циркуляции вектора напря-женности поля сторонних сил.
Зак. Ома в интегральной форме.
(обобщенный закон)
I=(j2 - j 1)/R=U/R
R=rґ(l/S) для цилиндрич проводников.
r - удельное сопротивление.
U=j2 - j 1 совпадают только для однородного участка цепи.
На осн. зак. сохр. энерг. можно получить зак. Ома в
общей форме, из которого следуют частные случаи.
Обобщенный закон Ома -
закон для неоднородного участка цепи.
Неоднородный участок - участок содержащий источник тока.
I=((j2 - j 1)±e)/R1,2 - обоб-щенный закон.
R1,2=R+ r
Со знаком + e берется тогда кокда сила тока от + к - .
Со знаком - e тогда когда о - к +.
(j2 - j 1)±e =U
Рассм. частный случай.
1) случай e=0
I=(j2 - j 1)/R=U/R
2) случай: замкнутая цепь
j1=j2 j2 - j 1=0
3) I=e/(R+r)
Зак. Ома в дифференци-альной форме.
Рассм. проводник перемен-ного сечения.
Выделим внутри элементар-ный объем , длинна - dl , площадь поперечн. сечения dS.
dR=rґ(dl/dS)
Выделим объем соответст-вующей однородному участку цепи.
dI=dU/dR
dI=dU/(rґ(dl/dS))
dI/dS=(1/r)ґ(dU/dl)
j=(1/r)ґE
1/r =g - удельная проводи-мость.
_ _
J=gE плотность тока в данн. точке проводника = произведению удел. Прово-димости этого проводника на напряженность в этой же точке. C учетом сторонних сил для неоднородн. участка цепи зак. Ома будет:
_ _ _
j=g(E+E*)
Лекция.
Дополнительные оапределе-ния Э.Д.С.
Для замкн. цепи зак. Ома будет
I=e/(R+r)
III) e=IR+Ir
IR - падение внеш. напряже-ния.
Ir - падение внутр. напряже-ния.
Электродвижущая сила источника тока = сумме падений напряжения на внеш. сопр. и на внутр. участке.
Из III можно прийти к заключению что если R>>r (источник тока разомкнут) R®Ґ.
IV) e=IR Э.Д.С.= напряже-нию на клемах разомкнутого тока.
Газовый разряд.
Ионизация. Рекомбинация газов.
Газы явл. диэлектрками , и в обычных условиях не проводят эл. ток.
Все газы сост. из нейтраль-ных атомов и малекул.
Если каким либо образом создать носители тока в газах , то они станут проводниками.(ионизация).
: УФ , R - лучи , g - изл. , a , b частицы - внешние ионизаторы.
Ионизация - это превраще-ние нейтральных атомов и малекул в ионы.
Электроны в атомах удер-живаются силами кулло-новск. притяжения.
Для удаления электрона необходимо сообщить энергию равную или превы-шающую энергию его связи с ядром (инергия ионизации Ei).
Ei =от 5 до 20 эВ
Электрон и ион могут перемещаться под действ. эл. поля.
Свободн. электроны сталки-ваясь с нейтральными атомами может войти в его состав создавая отрица-тельный ион.
В результате ионизации возник. 3 вида носителей тока: +ион , -ион , электрон.
Возникают два направлен-ных друг к другу встречных потока образующие эл. ток.
Одновременно с ионизацией в газе происходит рекомби-нация газа заключающаяся в исчезновении носителей тока.
Под действием внешнего ионизатора мощностью Dn.
(показавает сколько элек-тронов образуется в 1 м3 за 1с.)
1) В нач. момент времени И>Р.
2) Спустя некоторое время И=Р n+=n_ устанавливается равновесие концетрации носителей тока n.
3) После выключения. И<Р
спустя время t n=0.
При выполнении ситуации 2) прохождение эл. тока через газы назв. газовыми разряда-ми.
Число рекомбинирующих ионов в единицу времени в 1м3 оказывается пропорцио-нальным концентрации полож. и отр. Ионов.
Dnr = rn2 r - коэфф. рекомбинации.
В ситуации 2 Dni =Dnr
Dni = rn2
1) n=Ц(Dni /r)
Различают два вида газовых разрядов.
1) несомостоятельный
2) самостоятельный.
Несамостоятельный разряд - такой разряд для поддерж-ки которого необходим внеш. ионизатор.
Самостоятельный разряд - разряд без внешнего иониза-тора.
Вольтамперная характери-стика газового разряда.
Зак. Ома для газового рязряда.
Прохождение тока через газы удобно изучать с помощью схемы.
Для того чтобы существовал ток для газового ионизатора нужен внеш. ионизатор.
В области 1 с увеличением U прямо пропорционально растет сила тока.
В области 1 справедлив закон Ома для газов.
В обл. 2 наблюдается отклонение от прмолин. завис. и от зак. Ома.
Обл. 3 - обл. насыщения : все носители тока падают на электроны.
Обл. 1 - обл. слабых полей.
j=j++j_ j+qэлn+i
В равновесии qэл(+)=(-)=e в силу преимущества одно-кратной ионизации.
n+=n_=n
j=en(+)
Опыт показывает что скор. напр. движ. зависит от вел. напряженности эл. поля и подвижности.
u+=b+E
u_=b_E
u+,u_ - подвижность носите-лей тока.
u+>b_ b=u/E
Подвижность - это физ. вел. числ. = скор. упорядоч. движ. носителей тока под действием эл. поля единич-ной напряженности.
[b]=м2/(Вґс)
1) j=eґn(b++b_ )E - зак. Ома.
Произведение равновесной концентрации на элемен-тар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.
2) j=gE
g=eґn(b++b_ ) g=1/r
g - удельная проводимость
3) jн=eґDniґd
d - расст. между электрода-ми.
Dni - мощность ионизатора.
Ударная ионизация.
Самостоятельный газовый разряд.
При больших напр. поля свобод. электроны ускоря-ются до таких энергий которых достаточно для электронным ударом.
В обл. 4 в нутри газа появл. собственный источник ионизации , ударной иониза-ции.
Число электронов резко возрастает.
Лавинообразный процесс.
В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.
При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.
В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практи-чески без изменения Е.
Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.
Типы самостоятельных газовых разрядов.
1) тлеющий
2) искровой
3) дуговой
4) коронный
(в Трафимовой)
Зак. Джоуля - Ленца в интегральной и диффер. форме.
На внеш. сопротивлении в любой электрической цепи выделяется кол - во тепло-ты.
1) Q=I2Rt
За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (инте-гральная форма)
Получим зак. в диффер. форме.
Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSґdl
dR= r dl/dS
Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.
2) dQ=jґ(dS)2ґrґ(dl/dS)ґdt
(dQ/dVdt)=rj2
3) wт=rj2 j=gE
wт =rґg2E2=(1/g)g2E2
3ў ) wт =gE2
Работа и мощьность тока, КПД тока.
e=А*/q A=qe=eIt
полная мощность источника тока P=A*/t=Ie
P=I( IR+Ir)=I2R+I2r
P=Pполез+Pбезполезн
h=Pполез/P
Основные положения КЭТ.
1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/m)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.
2) Все металлы имеют кристаллич. структуру, в основе которой лежит кристаллич. решётка кубич. формы с положит. ионами в узлах. Таким образом решётка прозрач. для эл-нов.
3) Своб. эл-ны, оторванные от атомов, становятся коллективной собственно-стью всего металла. Они соверш. хаотич. тепл. движение. При этом эл-ны ведут себя подобно одно-атомным мол-лам идеал. газа, подчиняясь статистике Максвелла. Своб. эл-ны принято назыв. “электрон-ным газом”. Для эл-нов по ф-ле, известной из МКТ можно определить сред. скор. теплового движения:
бVтс=Ц(8KT)/(pm)»105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.
5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. бVс « бVTс
Оценим бVс по ф-ле j=qэлnбVс=enбVсЮ
Ю бVс=j/(en); n~1029м-3, j(Cu)=107А/м2Ю
Ю бVс~10-3м/с. Суммарн. скор.бVSс=бVс+бVTс
Поскольку бVс « бVTс, то бVSс » бVTс
Закон Ома в КЭТ
Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enбVс. Пусть к проводнику прило-жено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=constЮa=const.
F=eE=ma (по II з-ну Ньют.). a=(eE)/m
Для равноуск. движ. Vt=V0+at
ср. длина своб. пробега бlс~d расст. между ионами; t-время своб. пробега.
Скорость электрона
Vt=Vmax=at - до столкнове-ния с ионом
V0=0 - после столкновения с ионом
бVс=(V0+Vmax)/2=Vmax/2=(at)/2=(eEt)/2m;
t = бlс/бVSс = бlс/бVTс;
бVс = [(eE)/2m] · бlс/бVTс;
j=enбVс=[(e2nE)/2m]·бlс/бVTс з-н Ома в КЭТ
j=gE Ю g=(ne2бlс) / (2mбVTс)
Закон Джоуля-Ленца в КЭТ
Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.
За 1 сек. эл-н может испы-тывать Z соударений, где Z = 1/t =бVTс / бlс. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столк-новений каждого из них W=nбZсW1=wT.
wT=[(mV2max)/2]·n·бZс=[ne2бlс/2mбVTс]E2
Затруднения КЭТ
1) Температурная зависи-мость проводников. Соглас-но экспер. данным сопр. металлов увелич. с темпе-ратурой по з-ну R=R0+aT, где R0-сопр. при T=273K, a=1/273 град-1. Для r ф-ла аналогична r=r0+aT. Согл. опыта r~T. r=2mбVTс/(ne2бlс)Юr~бVTс. На осн. КЭТ след. r=ЦT, т.е. теория расходится с опытом.
2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.
Электронный газ, на самом деле подчиняется не класси-ческой статистике Мак-свелла, а квантовой стати-стике. Затруднения устра-няются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяет-ся при высоких темп-рах и малых концентрациях.
Электромагнетизм
Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнит-ное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создавае-мые в веществах движущи-мися эл-нами называют микротоками.
Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.
Для исслед. магн. поля применяют магн. стрелки (опыт Эстерда). Магн. стрелка предст. собой магнит, одетый на остриё. При пропускании тока через проводник стрелка испыты-вает силовое воздействие (устанавливается перпенд. проводнику). 2й метод исслед. маг. поля - с помо-щью плоского контура с током. Форма контура не играет роли.
Необходимо, чтобы размер контура был настолько мал, чтобы не искажал иссле-дуемое поле. Контуры, вносимые в магн. поле испытывают ориентирую-щее действие со стороны этого поля. Рамки принято характеризовать положит. нормалью. Положительной наз. нормаль, проведённую к центру проводника, удовле-творяющего правилу правого винта по напр. тока. На основании действия сил на рамку делают вывод: магнитное поле - силовое и его надо характеризовать опред. направлением. За напр. магн. поля принимают напр. полож. нормали в данном месте распол. контура с током.
Определение характеристик маг. поля связано с опреде-лением поведения контура с током в поле. В однор. поле внесён контур тока таким образом, чтобы вдоль линий поля была направлена плоскость.
Пара сил создаёт вращаю-щий момент M. Опыт показывает, что вращ. момент зависит от некот. силовой хар-ки поля и от силы тока в рамке (M~B; |M|~|I|). Для всех рамок вводится хар-ка, связанная с размерами расок и силой тока, текущей в них. Pm - магнитный момент. Pm=I·S [А·м2]. Магн. момент явл. вектором. Pm=n·I·S, где n - орт полож. нормали, т.е. Pm || n. Опыт показ., что M=[Pm , B] - механический вращ. момент равен векторному произведению магнитного момента рамки на вектор индукции магн. поля. M=Pm·B·sina (a=Pm^B). Из этой ф-лы видно, что M=max, если a=90° (поло-жение I на рис.) Mmax=Pm·B(1). M=0 при a=0 (полож II). Полож. II соответствует устойчивому равновесию рамки.
Индукция магн. поля - основная силовая хар-ка этого поля. Согл. ф-лы (1) B=Mmax / Pm. Индукцией магн. поля в данной точке наз. физическая величина, численно равная макс. вращающему моменту, действующ. в данной точке на рамку с током, имеющую единичный магн. момент. [B]=Н/(А·м)=Тл (Тесла). Ин-ция магн. поля предст. собой хар-ку результирую-щего поля, созданного макро- и микротоками. Индукцию можно изобразить силовыми линиями (аналог напряжён. эл. стат. поля).
Напряжённость магн. поля
Использ. вектор B не всегда удобно, поскольку проявл. зависимость от свойств Среды. Вводится вспомогат. хар-ка, не завис. от свойств Среды - напряжённость магнитного поля H (аналог D в эл. статике). B=mm0H, где m-магн. проницаемость. Для вакуума m=1. m0-магнитная постоянная. m0=4p·107 Гн/м. [H]=А/м. Для вакуума H=B/m0. За ед. (А/м) напряж. магн. поля принимают напряж. такого поля, у которого индукция B=4p·107Тл. H определяется только макротоками и не завис. от микротоков. Поскольку H - это вектор, для него принято строить линии напряжённости.
Вихревой характер маг. поля. В отличие от эл. стат. поля, маг. поле является вихревым: линии магн. поля всегда замкнуты, представ-ляют собой окружности (вихри), охватывающие проводники с током.
Магн. поле не явл. потенци-альным. Линии поля B строят согласно правилу правого винта. Векторы B и H направлены по касатель-ной в каждой точке линий.
Принцип суперпозиции
магнитных полей
Если в пр-ве имеется неск. проводников с токами, то в каждой точке пр-ва магн. поле создаётся каждым из проводников в отдельности независ. от наличия осталь-ных. Результир. поле в этой точке характеризуется векторами B и H. Bi и Hi - векторы, порождаемые i-ым проводникомс током.
B=SBi; H=SHi;
Закон Био-Савара-Лапласа
Осн. задача магнитостатики состоит в умении рассчит. хар-ки полей. Закон Б-С-Л с использованием принципа суперпозиции даёт простей-ший метод расчёта полей.
dB-индукция, созд. в точ. A.
dB=(mm0 /4p)·(I·dl·sina/r2) [1]
dH=(I·dl·sina)/(4pr2) [2]
Индукция магн. поля, созданная элементом проводника dl с током I в точке A на расстоянии r от dl пропорц. силе тока, dl, синусу угла между r и dl и обр. пропорцион. квадрату расстояния r.
___ ____ __
dB=(mm0 /4p)·(I·[dl,r] /r3)
Значение з-на Б-С-Л заклю-чается в том, что зная dH и dB от dl можно вычислить H и B проводника конеч. размеров разл. форм.
Применение з-на Б-С-Л
Поле прямого отрезка конечной длины с током.
m=1, m0=4p·10-7Гн/м, H?, B?
dH=I·dl·sina/4pr2
По правилу прав. винта найдём направл. dH
____ ____
H=SdH. Поскольку все dH напр. одинаково, можно записать H=тdH. Перемен-ной интегрирования выби-раем угол a.
rda/dl=sina Ю dl=rdl/sina.
dH=I·r·da·sina/sina·4pr2=
=I·da /4pr
из треуг. DOAЮ b/r=sinaЮ
Юr=b/sina.
dH=I·sinada/4pb
a1
H=т I·sinada/4pb=
a2
a1 a1
=I/4pbт sinada=-I/4pbcosa|
a2 a2
H=I/4pb(cosa1-cosa2) (2)
B=m0I/4pb(cosa1-cosa2) (2’)
Поле прямого бескон. тока.
Для беск. тока a1=0, a2=p
В (2): cosa1-cosa2=1-(-1)=2
H=I/2pb; B=m0I/2pb.
Поле кругового тока
H=тdH; r=R; a=90°
2pR
H=т I·dl/4pR2=I·2pR/4pR2=
0
=I/2R; B=Im0/2R (4)
Картина линий поля для кругового тока:
Поле подобно эл. статич. полю диполя. В связи с этим круговой ток пердст. собой магн. диполь. Покажем, что круг. ток может служить магн. диполем. Для этого в ф-ле (4) домножим числитель и знаменатель на pR2.
B=m0·I·4pR2/2RpR2
pR2=S; I·S=Pm
B=m0·Pm /2pR3
Закон Ампера
На опыте устан., что на проводник с током в магн. поле действ. сила. Для прямолин. проводников длиной l: F=IBl·sina. При a=90° F=IBl. Для проводни-ков сложной формы з-н Ампера запис. в дифференц. форме: dF=IBdl·sina;
___ ___ ___
dF=I[B,dl]-векторная форма.
____ ____
F=SdF
Взаимод. паралл. токов
Рассм. 2 проводника, расположенных паралл. друг к другу.
Будем считать, что 1 создаёт магн. поле, а 2 находится в поле 1-го. Тогда индукция маг. поля B1 в точках нахождения 2: B1=m0I1/2pd.
F2=I2B1l2sina=mI1I2l2/2pd.
Можно аналог. рассм. силу F1, действующ. на проводник 1 со стороны поля тока I2. F1=F2, если l1=l2=l. Парал. токи притягиваются, антипарал. - отталкиваются.
При рассм. парал. проводни-ков вводят силу, действ. на единицу длины проводника:
fед.дл.=m0I1I2/2pd. (1)
Эта ф-ла позвол. ввести единицу силы тока в СИ “1 Ампер”.
Опред. ед. силы тока-Ампер
Полагая, что I1=I2=I из (1) имеем: I2=fед.дл.·2pd/m0= fед.дл.·d/2·10-7. Берём d=1м, fед.дл.=2·10-7Н/м.
За единицу силы тока 1A приним. силу такого тока, который протекает по 2-м парал. проводникам, расп. на расст. 1 м в вакууме, вызывает силу взаимодейст-вия между ними, равную 2·10-7Н на кажд. ед. длины.
Сила Лоренца.
Эл. ток предст. собой упорядоченн. движение эл. зарядов. На токи в магн. поле действует сила Ампера, т.е. со стор. магн. поля на кажд. носитель заряда действ. тоже сила. Эту силу наз. силой Лорен-ца.
____ ____
Fл=qVBsina; a=B^V
___ _ ____
Fл=q[V,B] - в вект. форме.
На покоящеиеся заряды сила Лоренца не действ. На заряды, влетающие в поле паралл. линиям поля сила Лор. тоже не действ.
Если одноврем. действ. электр. и магн. поля, то справедлва ф-ла Лоренца:
-___ ___
F=qE+Fл